harmônica impar (terceira, quinta) - significado y definición. Qué es harmônica impar (terceira, quinta)
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es harmônica impar (terceira, quinta) - definición

Análise Harmônica; Análise Harmónica; Análise harmônica

harmônica         
  • thumb
  • Comportamento de ondas estacionárias com uma extremidade fixa e uma livre (aberta) . Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=4L</math>

<math>n=3 \quad \Rightarrow \quad \lambda = \tfrac{4L}{3}</math>

<math>n=5 \quad \Rightarrow \quad \lambda=\tfrac{4L}{5}</math>

<math>n=7 \quad \Rightarrow \quad \lambda= \tfrac{2L}{7}</math>
  • thumb
  • Comportamento de ondas estacionárias com duas extremidades fixas. Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • Comportamento de ondas estacionárias com duas extremidades livres (abertas). Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • thumb
  • thumb
  • Configuração típica de um som com uma frequência fundamental de 100&nbsp;Hz.
  • Formação de acordes a partir da série harmônica do Dó<sub>1</sub>. Outros acordes podem ser formados com os próximos elementos da série. Os acordes formados por essa parte da série foram, respectivamente, da esquerda para a direita:
C, C<sup>7</sup>, C<sup>9</sup>, E<sub>dim</sub>, E<sup href="Série harmônica (música)">Ø</sup>, G<sub>m</sub>.
  • Animação representando o comportamento de uma onda se propagando entre duas extremidades fixas, em cada linha é apresentado uma harmônico diferente. É possível comparar as duas colunas, na direita há a ênfase no comportamento entre os nós e na coluna da esquerda vê-se a modificação total do modo de vibração em função da frequência do harmônico.
  • left
  • Comportamento das ondas estacionárias com extremidades fixas. A distância entre dois nós consecutivos vai sendo diminuída a cada harmônico, na proporção <math display="inline">\frac{1}{n}, \quad n\in \mathbb{N}^*</math>.
  • Esquema do comportamento de uma onda estacionária (preta). As duas ondas que a formam (azul e vermelha) interferem entre si e formam a onda resultante. Pelo fato das extremidades fixas, as ondas (azul e vermelha) são reflexões da mesma onda. Ao interferirem entre si, formam a onda estacionária (preta). Os pontos vermelhos representam os nós (ou nodos) da onda resultante.
sf (lat harmonica) Mús
1 Instrumento musical, espécie de caixa de ressonância com lâminas de vidro ou metal que se tocam com uma baqueta.
2 Gaita de boca.
3 Harmônio portátil.
4 Acordeão, sanfona.
5 Registro muito suave, nos órgãos alemães.
harmônico         
  • thumb
  • Comportamento de ondas estacionárias com uma extremidade fixa e uma livre (aberta) . Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=4L</math>

<math>n=3 \quad \Rightarrow \quad \lambda = \tfrac{4L}{3}</math>

<math>n=5 \quad \Rightarrow \quad \lambda=\tfrac{4L}{5}</math>

<math>n=7 \quad \Rightarrow \quad \lambda= \tfrac{2L}{7}</math>
  • thumb
  • Comportamento de ondas estacionárias com duas extremidades fixas. Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • Comportamento de ondas estacionárias com duas extremidades livres (abertas). Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • thumb
  • thumb
  • Configuração típica de um som com uma frequência fundamental de 100&nbsp;Hz.
  • Formação de acordes a partir da série harmônica do Dó<sub>1</sub>. Outros acordes podem ser formados com os próximos elementos da série. Os acordes formados por essa parte da série foram, respectivamente, da esquerda para a direita:
C, C<sup>7</sup>, C<sup>9</sup>, E<sub>dim</sub>, E<sup href="Série harmônica (música)">Ø</sup>, G<sub>m</sub>.
  • Animação representando o comportamento de uma onda se propagando entre duas extremidades fixas, em cada linha é apresentado uma harmônico diferente. É possível comparar as duas colunas, na direita há a ênfase no comportamento entre os nós e na coluna da esquerda vê-se a modificação total do modo de vibração em função da frequência do harmônico.
  • left
  • Comportamento das ondas estacionárias com extremidades fixas. A distância entre dois nós consecutivos vai sendo diminuída a cada harmônico, na proporção <math display="inline">\frac{1}{n}, \quad n\in \mathbb{N}^*</math>.
  • Esquema do comportamento de uma onda estacionária (preta). As duas ondas que a formam (azul e vermelha) interferem entre si e formam a onda resultante. Pelo fato das extremidades fixas, as ondas (azul e vermelha) são reflexões da mesma onda. Ao interferirem entre si, formam a onda estacionária (preta). Os pontos vermelhos representam os nós (ou nodos) da onda resultante.
adj (lat harmonicu)
1 Que tem harmonia.
2 Que diz respeito à harmonia.
3 Coerente, conforme, bem proporcionado, regular, simétrico.
4 Designativo dos sons acessórios, que se produzem ao mesmo tempo que um som fundamental.
Harmónico         
  • thumb
  • Comportamento de ondas estacionárias com uma extremidade fixa e uma livre (aberta) . Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=4L</math>

<math>n=3 \quad \Rightarrow \quad \lambda = \tfrac{4L}{3}</math>

<math>n=5 \quad \Rightarrow \quad \lambda=\tfrac{4L}{5}</math>

<math>n=7 \quad \Rightarrow \quad \lambda= \tfrac{2L}{7}</math>
  • thumb
  • Comportamento de ondas estacionárias com duas extremidades fixas. Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • Comportamento de ondas estacionárias com duas extremidades livres (abertas). Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • thumb
  • thumb
  • Configuração típica de um som com uma frequência fundamental de 100&nbsp;Hz.
  • Formação de acordes a partir da série harmônica do Dó<sub>1</sub>. Outros acordes podem ser formados com os próximos elementos da série. Os acordes formados por essa parte da série foram, respectivamente, da esquerda para a direita:
C, C<sup>7</sup>, C<sup>9</sup>, E<sub>dim</sub>, E<sup href="Série harmônica (música)">Ø</sup>, G<sub>m</sub>.
  • Animação representando o comportamento de uma onda se propagando entre duas extremidades fixas, em cada linha é apresentado uma harmônico diferente. É possível comparar as duas colunas, na direita há a ênfase no comportamento entre os nós e na coluna da esquerda vê-se a modificação total do modo de vibração em função da frequência do harmônico.
  • left
  • Comportamento das ondas estacionárias com extremidades fixas. A distância entre dois nós consecutivos vai sendo diminuída a cada harmônico, na proporção <math display="inline">\frac{1}{n}, \quad n\in \mathbb{N}^*</math>.
  • Esquema do comportamento de uma onda estacionária (preta). As duas ondas que a formam (azul e vermelha) interferem entre si e formam a onda resultante. Pelo fato das extremidades fixas, as ondas (azul e vermelha) são reflexões da mesma onda. Ao interferirem entre si, formam a onda estacionária (preta). Os pontos vermelhos representam os nós (ou nodos) da onda resultante.
adj.
Relativo à harmonia.
Que tem harmonia.
Coherente.
Regular; proporcionado.
(Lat. harmonicus)

Wikipedia

Análise harmónica

A análise harmónica (português europeu) ou harmônica (português brasileiro) é o ramo da matemática que estuda a representação de funções ou sinais como a sobreposição de ondas base. Ela investiga e generaliza as noções das séries de Fourier e da transformação de Fourier. As ondas básicas são chamadas de harmónicas, e este ramo da matemática logo passou a ser conhecido pelo nome de "análise harmónica". Nos dois séculos passados (XIX e XX), tornou-se um tema vasto, com aplicações em áreas tão diversas como o processamento de sinais, mecânica quântica, e ciência neuronal.